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Abstract—Mobile health (mHealth) applications, benefiting
from mobile computing, have generated numerous mHealth data.
However, they are dispersed across isolated devices, which hinders
discovering insights underlying the aggregated data. Considering
the online characteristics of mHealth, in this work, we present the
first online data VAluation and Pricing mechanism, namely VAP,
to incentive users to contribute mHealth data for machine learning
(ML) tasks in mHealth systems. Under the Bayesian framework, we
propose a new metric based on the concept of entropy to calculate
data valuation during model training in an online manner. In
proportion to the data valuation, we then determine payments as
compensations for users to contribute their data. We formulate
this pricing problem as a contextual multi-armed bandit with the
goal of profit maximization and propose a new algorithm based on
the characteristics of pricing. Furthermore, to tackle the budget
constraint, we incorporate a two-stage multi-armed bandit with a
knapsack method. We also extend VAP to advanced ML models by
computing the entropy on the prediction space. Finally, we have
evaluated VAP on two real-world mHealth data sets. Evaluation
results show that VAP outperforms the state-of-the-art data valua-
tion and pricing mechanisms in terms of computational complexity
and extracted profit.

Index Terms—Data valuation, online pricing, mobile health.

I. INTRODUCTION

MOBILE health (mHealth) technologies offer real-time
monitoring for health status, facilitate rapid diagnosis

of potential health issues, and provide remote healthcare ser-
vices [1]. The recent developments towards intelligent mHealth
systems, such as Apple Health [2], Google Fit [3], and Mi-
crosoft Health [4] are pieces of evidence of these trends [5].
Various machine learning (ML) models have been developed
to extract information underlying mHealth data [5], [6], [7].
However, the obstacle to the wide adoption of ML in mHealth
applications comes from model uncertainty [8], which would
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provide unreliable prediction and is unacceptable in health ap-
plications [9]. The uncertainty of the model parameters often
comes from insufficient training data and can be eliminated
by acquiring enough data [8]. In mHealth, reducing the model
uncertainty and accurately predicting a phenotype depends upon
using a large amount of data from many other individuals with
similar or related diseases. One potential approach to eliminate
this dilemma is to collect extensive mHealth data from users
as training data, harnessing the wisdom of crowd [10]. Thus,
the further development of mHealth should have the ability to
incentive users of mHealth services to contribute their data into
the system to support ML models’ training.

The valuable mHealth data are dispersed across isolated de-
vices and have not been exploited efficiently. Users are reluctant
to voluntarily share their personal health data due to the potential
incurred costs and privacy concerns [11]. Health information
privacy is the right of individuals to control the access, use,
or disclosure of their identifiable health data [12]. And peo-
ple’s agreement to share their data usually revolves around the
value, which refers to the benefit that is accrued to the user
or society due to the use of data [10]. Therefore, it is highly
necessary to design an incentive mechanism to stimulate users to
contribute their mHealth data. For incentive mechanism design
in mHealth, we need to take the online characteristics of the
data acquisition into account. First, the sensing data collected
by mHealth can be obtained remotely in a streaming manner,
which is often used for real-time predictive modeling [13].
Second, within the changing mHealth contexts, traditional static
mHealth models may fail to respond with a correct prediction
result. For example, people may carry out the same activity in
a different manner or suffer from the same disease with various
clinical symptoms [14]. Furthermore, population demograph-
ics, the prevalence of disease, and clinical practice may also
evolve over time. This implies that predictions based on static
data and models can become outdated and hence no longer be
accurate [15]. Last, the users’ participation in the data acquisi-
tion process is dynamic. For example, in disease detection, the
symptoms appear at an unpredictable time. To address these
dynamics, many variants of online learning and incremental
learning models are proposed [14], [15], [16], [17]. With these
methods, the mHealth models could update over time as new
data is collected and adapt quickly to new contexts. Besides,
compared to the method that works with the sample pool once
and for all, an online manner will not increase the permutation
complexity.
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There are two critical components in designing an incentive
mechanism: data valuation and data pricing. The data valuation
scheme quantifies the contribution of data within the context
of ML model training. Based on this data valuation metric,
the data pricing mechanism determines the compensation to
users for their contributed data. We next summarize two major
challenges for data valuation and pricing arising from the online
characteristics of the data acquisition process in mHealth.

The first challenge is to evaluate the contribution of newly
arrived data in ML model training. The traditional data valuation
schemes [18], [19], [20], [21], [22], built upon the concept
of Shapley value from cooperative game theory [23], are not
suitable for such an online learning situation. In these methods,
all the data are collected in advance for model training, and the
data contribution is evaluated at the end of model training. In
contrast, we need to measure the data valuation in an online
manner, based on the currently collected data, instead of the
complete training data set. However, it is difficult to infer the
data valuation at the intermediate model training without the
global knowledge of the whole data set. Moreover, considering
the privacy concerns in mHealth, compared to submitting whole
data, it is more proper that users only upload part of the data
(such as the feature of the data sample but not the label of it)
to evaluate the data and query the price. Therefore, the data
valuation module should have the ability to estimate the data
contribution based on such kind of incomplete data.

The second challenge is on designing profit-maximizing data
pricing mechanisms within an asymmetric information environ-
ment. Some auction-based mechanisms have been proposed for
data pricing [18], [24], [25]. However, the bidding model in
the auction is unnecessarily complicated for data pricing, as
users may often be reluctant to provide the minimum willing
payment for their data or even do not know the exact value
of this information. To this end, we turn to the posted pricing
mechanism [26], where the service provider posts a public price,
and the users only need to determine whether to accept the
price and contribute the data. Nevertheless, the posted pricing
mechanism introduces a heavy burden on the service provider.
There is an information asymmetry over the minimum payment
to data between the users and the service provider. Furthermore,
users’ arrival sequences are also unknown to the service provider.
Without complete information about the payment to data, it
is hard for the service provider to set an appropriate price.
The optimization of profit maximization needs to take both the
revenue extracted from data valuation and the expenditure for
data acquisition into account. In addition, there may be budget
constraints in the system, maximizing the profit within a limited
budget inevitably doubles the difficulty in the design of data
pricing mechanisms.

In this work, jointly considering the above challenges, we
propose the first online data valuation and pricing mechanism
for ML tasks in mHealth, namely VAP. We summarize our
contributions as follows.
• First, we introduce a novel metric for data valuation under

the Bayesian perspective for Bayesian linear regression. This
metric gauges the influence of data on the machine learning
model training procedure. It is quantified by evaluating the

entropy of the distributions over model parameters, permitting us
to appraise data value in an online manner, eradicating the neces-
sity for complete dataset collection. Furthermore, we enhance
this data valuation metric from Bayesian linear regression to
more intricate machine learning models by transitioning entropy
computation from the parameter space to the prediction space.
• Second, we present an online data pricing mechanism that

incorporates both data valuation and users’ reserve values. We
formulate the determination of payments as a contextual multi-
armed bandit (MAB) problem, aiming to maximize profit and
propose a novel method for data pricing within this framework.
Additionally, when facing the challenge of budget constraints
in more complex scenarios, we model it as a two-stage multi-
armed bandit problem with a knapsack and devise a solution.
In both cases, a dual process of exploration and exploitation
is employed to pinpoint optimal data prices, informed by user
responses across diverse price points. Appreciating the inherent
monotonicity of pricing, we exploit an expanded user feedback
base, thereby securing a more profitable endeavor.
• Finally, we assess VAP’s performance utilizing two authen-

tic mHealth datasets. The assessment results underline that our
VAP holds supremacy over contemporaneous data valuation and
pricing mechanisms for online Machine Learning tasks within
mHealth frameworks, in terms of computational complexity and
profit extraction.

A preliminary version of this work [27] was published in
INFOCOM 2022. In this work, we add necessary proofs and
property comparisons with traditional methods for data valu-
ation. As for online data pricing, we add the regret analysis
of VAP-Pricing, substantially extend the data pricing problem
to a new situation under a fixed limited budget, and propose
a new algorithm, namely VAP-PricingwK. We also add some
experiments to validate the newly proposed method.

The structure of this paper unfolds as follows: In Section II,
we present the system model and problem formulation. Sub-
sequently, in Section III, we propose an online data valuation
metric based on the concept of entropy and delve into some of
its characteristics. Moving forward, Section IV is dedicated to
the design of two distinct data pricing algorithms - one framed
within the contextual Multi-Armed Bandit (MAB) schema, and
the other following the Bandit with a Knapsack method, sub-
ject to a budget constraint. While in Section V we elaborate
on incorporating VAP with more articulated machine learning
models. The results of our performance evaluations take the
stand in Section VI, followed by a review of related works in
Section VII. Finally, we articulate the conclusion of our study
in Section VIII.

II. PRELIMINARIES

We consider the data acquisition process for a mHealth system
in an adaptive way, as shown in Fig. 1. There are two types
of participants involved in a mHealth system: data contributors
and a service provider. The service provider trains online ML
models on the collected data from data contributors to provide
healthcare services. Due to the limited amount of data and the
fading freshness of historical data, the ML models’ performance
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Fig. 1. Data acquisition process in a mHealth system.

would decay over time. The service provider needs to acquire
new mHealth data periodically to retrain the ML models. A
specific data acquisition process is conducted as follows.

At the time slot t, first, a data contributor arrives and queries
the price of her data by submitting the training dataxxxwithout the
label y, where the feature xxx would help the service provider to
evaluate the data valuation, and not releasing the label y would
preserve the content of data before the data exchange. Second,
the service provider evaluates the data based on its contribution
to ML model training, calculated by the performance improve-
ment between the current model and the updated model after the
data is added. Based on the data valuation, the service provider
posts the price determined by the data pricing mechanism to
the data contributor as incentives. Third, if the data contributor
is satisfied with the price, she would contribute the complete
training data (xxx, y). Otherwise, she has no incentives to do so.
Having received the data from multiple data contributors, the
service provider would update the ML model, data valuation
metric, and data pricing mechanism. Finally, the service provider
gives the corresponding payment to the data contributor. We need
to design an appropriate data valuation metric and a data pricing
mechanism to quantify the performance improvement for model
training and make a trade-off between the performance and data
acquisition expenditure.

We present a system model to describe the above data ac-
quisition process. Each data contributor owns a set of private
mHealth training data, each of which is a pair of a feature and
the corresponding label, denoted by d = (xxx, y). We use GXXX(xxx)
to denote the contribution of a new data sample d = (xxx, y) to the
model training. We consider each data contributor has a reserve
value v to her data set, which indicates the minimum unit willing
price the data contributor would like to share her data. Similar to
the previous work [24], [26], all data contributors’ reserve values
follow an independent and identical distribution with probabil-
ity density function f(v) over the range [0, 1]. Different from
the classical Bayesian mechanism design [28], the probability
density function is unknown to the service provider and needs to
be learned from the interaction with data contributors. When one
data contributor arrives at the online mHealth system, the service
provider posts a unit price of p for purchasing each piece of data.
If the data contributor accepts the offered price (i.e., p ≥ v),
she would upload her data and get the corresponding payment;
otherwise (0 ≤ p < v), she would leave without contributing

her data. The goal of the data pricing mechanism is to determine
the posted price p at each time slot to maximize the total profit,
which will be defined in Section IV later.

III. DATA VALUATION

A. A Simple Case: Bayesian Linear Regression

To illustrate the idea of data valuation, we first consider a basic
model in ML, linear regression [29] under the Bayesian frame-
work. In mHealth, linear regression models are widely used in
heart rate monitoring [17], blood pressure monitoring [30], men-
tal illness detection [31], etc. More specifically, we use the ridge
regression model as an example in this subsection and extend
the concept of data valuation to more complex models such as
Gaussian process (GP) [32] and Bayesian neural networks [33]
later.

Ridge regression can be explained under a Bayesian frame-
work as a type of Bayesian linear regression [34], in which maxi-
mizing the parameter’s posterior probability by the Bayesian for-
mula is the same as minimizing the loss function in the traditional
frequentist view. Without loss of generality, we assume the prior
probability of the parameters in ridge regression satisfy Gaussian
distribution, i.e., P (βββ) ∼ N (0, �2I) with precision parameter
(variance) �2. The training process of ridge regression is to use
new data to obtain posterior parameter distribution. Thus, the
Bayesian framework provides a new perspective to interpret
the model training process: the change of posterior parameter
distribution can represent the evolution of the model training
process to some extent. To calculate this change, we first express
the posterior probability of the model parameter βββ from the
Bayesian theorem

P (βββ|YYY ) =
P (YYY |βββ)P (βββ)

P (YYY )
∝ P (YYY |βββ)P (βββ), (1)

where YYY is the corresponding label of the data set (XXX,YYY ), and
P (YYY |βββ) is the generation probability of YYY under the model
parameter βββ, and follows the Gaussian distribution. As the
product of two Gaussian distributions P (YYY |βββ)P (βββ) is still
Gaussian, the posterior parameter distribution P (βββ|YYY ) follows
a Gaussian distribution. We denote the corresponding mean as
β̄̄β̄β, and the variance as Σ. In this posterior Gaussian distribution,
the exponential power should be equal. So that

(
βββ − β̄̄β̄β

)Σ−1 (
βββ − β̄̄β̄β

)
=

1

γ2
(YYY −XXXβββ)�(YYY −XXXβββ) +

1

�2
βββ�βββ.

(2)
Deriving from (2), by equal coefficients of the same order, we
can get

βββ�Σ−1βββ = βββ�
(
XXX�XXX

γ2
+

I

�2

)
βββ

Σ−1 =
XXX�XXX

γ2
+

I

�2
, (3)

−2β̄̄β̄β�Σ−1βββ = −2
βββ�XXX�YYY

γ2
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β̄̄β̄β =

(
XXX�XXX +

�2

γ2
I

)−1

XXX�YYY . (4)

Thus, P (βββ|YYY ) follows a Gaussian distribution with the mean
and the variance of β̄̄β̄β = (XXX�XXX + �2

γ2 I)
−1XXX�YYY and Σ =

( 1
γ2XXX

�XXX + 1
�2 I)

−1, respectively.
We regard the data’s contribution as how much information

the data samples provide to the model training process. We use
the metric of differential entropy [35], a concept from informa-
tion theory, to measure the information contained underlying
the corresponding model. When a new data sample is added
to the training set, the parameter distribution shrinks, implying
the reduction of the model parameters’ uncertainty. We quantify
this uncertainty reduction as the differential entropy of the prior
parameter distribution and the posterior parameter distribution.
We further use the extent of this reduction to measure the
contribution of a data sample to the model training. The differ-
ential entropy of the model parameter distribution (a Gaussian
distribution) is defined as

H(βββ) =
1

2
ln [(2πe)n[Σ]] , (5)

which is only related to variance Σ of the current distribution.
And for the parameters βββ of one model, the parameter distri-
bution depends on the collected training data. Thus, we denote
the differential entropy of parameter distribution H(βββ|YYY ) on
the data set (XXX,YYY ) as H(XXX), then the differential entropy of
parameter distribution with the training data set (XXX,YYY ) can be
calculated by

H(XXX) =
1

2
ln
(
(2πe)ddet (ΣXXX)

)
=

d

2
ln 2πe+

1

2
ln det(ΣXXX), (6)

After adding new data sample (xxx, y), the differential entropy of
the parameter distribution is updated to

H(XXX + xxx) =
1

2
ln
(
(2πe)ddet

((
Σ−1
XXX + xxxxxx�)−1

))
=

d

2
ln 2πe− 1

2
ln det

(
Σ−1
XXX + xxxxxx�) . (7)

The posterior entropy reduction of the model parameter distri-
bution is

GXXX(xxx) = H(XXX)−H(XXX + xxx)

=
1

2
ln

det
(
Σ−1
XXX + xxxxxx�)

det(Σ−1
XXX )

=
1

2
ln det

(
I+ xxxxxx�ΣXXX

)
=

1

2
ln
(
1 + xxx�ΣXXXxxx

)
. (8)

Definition 1: VAP-Valuation: The data valuation of data sam-
ple (xxx, y) for the model with data set (XXX,YYY ) is measured by
GXXX(xxx) = 1

2 ln(1 + xxx�ΣXXXxxx).

Thus, we can use GXXX(xxx) to calculate the valuation of data
xxx, by measuring the marginal contribution that the data xxx will
make to the model that already has been trained by the data XXX .

Considering the importance of reducing uncertainty in
mHealth, we emphasize the relationship between GXXX(xxx) and
traditional predictive uncertainty. In Bayesian linear regression,
in prediction space, for a new set of features xxx to be pre-
dicted, the predictive distribution takes the form P (y|xxx,βββ) =
N (xxx|βββ�xxx, σ2

N (xxx)). A classic conclusion is that the predictive
uncertainty can be determined by the variance σ2

N (xxx) of the
predictive distribution, which is given by

σ2
N (xxx) = σ2 + xxx�ΣXxxx. (9)

The first term represents the inherent noise in the generation
of data, whereas the second term can reflect the uncertainty
associated with the parameterβββ. We can notice that the determi-
nants of a and b are the same, i.e., xxx�ΣXxxx. We will discuss the
comparison between them in detail in Section V. This important
discovery will play an important role in our later extension of
VAP-Valuation to more advanced models.

B. Properties of Data Valuation Metric

Compared with traditional data valuation methods in ML
such as Shapley value [18], [19], [20], VAP-Valuation has the
following characteristics:

Submodularity:
Definition 2 ([36]): LetΩ be a finite ground set and f : 2Ω →

R. Then f is submodular if for all S, T ⊆ Ω with S ⊆ T and
every x ∈ Ω\T ,

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ).

For any data sets S, T s.t. S ⊆ T we define the set U = T −
S . We use UUU , TTT , SSS to denote the features of the data samples in
the set of U , T and S

Δ = GSSS(xxx)−GTTT (xxx)

=
1

2
ln

det
(
Σ−1
SSS + xxxxxx�) detΣSSS

det
(
Σ−1
TTT + xxxxxx�

)
detΣTTT

=
1

2
ln

det
(
Σ−1
SSS + xxxxxx�) detΣSSSdet

(
Σ−1
SSS +UUU�UUU

)
det

(
Σ−1
SSS +UUU�UUU + xxxxxx�

)
=

1

2
ln

det
(
Σ−1
SSS + xxxxxx� +UUU�UUU + xxxxxx�ΣSSSUUU

�UUU
)

det
(
Σ−1
SSS +UUU�UUU + xxxxxx�

)
=

1

2
ln det

(
I+

xxxxxx�ΣSSSUUU
�UUU

Σ−1
SSS +UUU�UUU + xxxxxx�

)
> 0. (10)

Thus, we can get GSSS(xxx) > GTTT (xxx), which means the data valua-
tion metric GXXX(xxx) we proposed is submodular. A more intuitive
understanding is that the marginal contribution of the data di-
minishes with the size of the data training set, which means that
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for the same data sample, the earlier the data is submitted, the
higher the contribution generated.

Additivity: For a collection of data sets submitted by a data
contributor within a certain period, the total valuation of all the
data (i.e., the total entropy reduction of the model parameter
distribution) is the sum of the individual valuation of each data
set. It is independent of the internal order of the data sets. That
is, the data valuation metric is a set function: Owning (XXX,YYY ),
for any new data set S , using G(S) to denote the data valuation
of data set S , calculated by the features SSS of data in S , it is a
fixed value

G(S) = GXXX(SSS) = H(XXX)−H(XXX +SSS)

=
1

2
ln det

(
Σ−1
XXX +SSS�SSS

)
det(ΣXXX)

=
1

2
ln det

(
I+SSS�SSSΣXXX

)
. (11)

More specifically, G(S) =
∑

si∈S G
∑i−1

j=1 sssj
(sssi) regardless the

position of si in S , though the specific value of G∑i−1
j=1 sssj

(sssi)

changes under different order of data sets. Moreover, the val-
uation of the entire dataset I is completely distributed among
all data contributors, i.e., G(I) =

∑
i∈I G(i), which is easily

derived by the additivity.
Fairness: Two data samples that are identical in what they

contribute to the model have the same valuation in an online
manner. That is, for any data s and s′ are equivalent in the
sense that G(S ∪ {s}) = G(S ∪ {s′}), ∀S ⊆ I\{s, s′}, then
GS(si) = GS(sj). Meanwhile, data with zero marginal contri-
bution to the model has zero valuation, i.e., if G(S ∪ {s}) =
G(S), then GS(SSS) = 0. Actually, because the variance of pa-
rameter distribution is non-negative, if data has zero valuation,
it means the variance is zero, and then the Gaussian function
becomes a Dirac delta function, in whichβββ only has one possible
value.

Label Anonymity: According to Definition 1, in VAP-
Valuation, each data’s valuation can be calculated only depend-
ing on the data features xxx, without using data label y, which
can preserve the content of the data before data exchange. On
the other hand, VAP-Valuation can infer the contribution of xxx
in real-time when the data is submitted, without waiting until
the end of model training, which provides the possibility for
subsequent online data pricing.

Comparison With Shapley Value Valuation (SVV): 1) SVV is
not submodular, and due to its computation principle, whenever
a new data sample is added, the SVV of all data samples will
need to be recalculated. 2) SVV also has additivity. In addition to
this, the sum of SVV of all data samples is equal to 1, which is not
available in VAP-Valuation. 3)SVV is the only valuation method
with strict fairness. While our method can satisfy online fairness
according to the above discussion. 4)SVV does not have label
anonymity, and can only be calculated after the whole complete
data samples are obtained.

IV. DATA PRICING

A. Profit Maximization Mechanism

In this section, we present a posted pricing mechanism,
VAP-Pricing, to maximize the service provider’s profit in an
online manner. According to Definition 1, GXXX(xxx) denotes the
contribution that one piece of data xxx brings to the performance
improvement of model training, from which the service provider
can extract profit. As we have mentioned before, each data
contributor has a reserve value of v. Only if the payment is
higher than the reserve value would she upload her data and
get the corresponding payment; otherwise, she would leave
without contributing her data. Therefore, the profit that the
service provider can obtain from one data contributor with a
reserve value v is

u(p, v) =

{
π(GXXX(xxx))− np p ≥ v,
0 0 ≤ p < v.

(12)

where p is the unit price of each data and π(GXXX(xxx)) is the
revenue extracted from the updated model after adding n data
samples xxx. We use F (p) =

∫ p

0 f(v)dv to denote the probability
that a data contributor accepts the data price p. Thus, given the
distribution of the reserve value v and the price p, the expected
profit extracted from n data samples can be written as

E[u(p, v)] = Fv(p)(π(GXXX(xxx))− np). (13)

As we do not know the distribution of reserve value, we
tackle the above profit optimization problem by leveraging
the exploration and exploitation technique from bandit liter-
ature [37], in which a decision-maker (the service provider)
takes actions to maximize his long-term rewards (profits), by
balancing between exploration and exploitation. At each time
slot t ∈ {1, 2, . . . , T}, a new data contributor with a value vt ar-
rives. The service provider chooses a posted price from the set of
candidate prices P � {pi | pi = i

K , i = 1, . . . ,K}, where we
regard each price pi ∈ P as an arm as the traditional setting [38].
Then he observes the feedback from the data contributor and gets
the corresponding profit according to (12).

The classical method UCB1 algorithm [39] estimates the
unknown expected reward (profit) of each arm by making a
linear combination of previously observed rewards of the arm.
However, in our problem, the reward distribution behind each
candidate price (arm) is not fixed, which is also determined by
the valuation of data provided by the data contributor. Thus, we
cannot directly use UCB1 to solve the online pricing problem.
We observe that we can regard the data valuation as a type of
context associated with each arm, and thus the pricing problem
can be formulated as a contextual bandit problem [40]. To solve
it, we first rewrite the profit function as

E[u(p, v)] = Fv(p)(π(GXXX(xxx))− np)

= π(GXXX(xxx))Fv(p)− npFv(p)

=
[
π(GXXX(xxx)) n

] [ Fv(p)

−pFv(p)

]
. (14)
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At time slot t, we defineΠt = (π(Gt), nt)
� as the features of the

context, where Gt denotes the total contribution of the arriving
data set, andnt is the number of data samples. Then the expected
reward of arm pi can be expressed as

μi,t = Π�
t ω

∗
i , (15)

where ω∗
i � (Fv(pi),−piFv(pi))

� represents the unknown co-
efficient vector. To post a reasonable price, that is, to select the
best arm of each round, the service provider needs to estimate
the expected rewards in (15) of arms accurately. The service
provider can obtain the value ofΠt based on the VAP-Valuation.
Then we should learn ωi of each arm, which can be explained
as learning the reserve value distributions of data contributors
implicitly. In this way, we can regard the features of the context as
independent variables, and the expected reward is the dependent
variable. With this, we can treat the observed context-reward
pairs as training samples and train a regression model for each
arm.

However, different from the traditional setting in the Lin-
UCB [40] to solve the contextual MAB problem, in our problem,
the feedback information from each choice of one arm (i.e., one
possible posted price) can not only update the current arm but
also be used as training inputs for other arms. That is when
one data contributor rejects a specific price pi, which means
0 ≤ pi < v, she would also reject the price p with p < pi.
Similarly, when one data contributor accepts the price pi, which
means pi ≥ v, she would also accept the price p with p > pi.
Thus, in this work, we defineMi as a design matrix of dimension
j∗i × 2 at time slot t, whose rows correspond to j∗i = ji + jl + js
training inputs, where ji is the amount of training data with price
pi, jl is the number of training data with p > pi and the data
contributor rejects the price p, js is the number of data with price
p < pi and the data contributor accepts the price p. And ci is the
rewards corresponding to these contexts. With this augmented
training data set (Mi, ci), we can have a better estimate of the
coefficients by applying ridge regression

ω̂i =
(
M�

i Mi + I
)−1

M�
i ci, (16)

where I is the 2× 2 identity matrix.
Algorithm 1 gives a detailed description of the entire Lin-

UCB algorithm for pricing, in which Ai = M�
i Mi + I and

bi = M�
i ci. For the input of the algorithm, α is a parameter

to control the exploration scale, GXXX(xxx) is the VAP-Valuation
of xxx, π(·) is the revenue function, K is the number of arms
(candidate price), and T is the total time slots. At each time
slot, there is a data contributor t querying the price by her data
xxxt, and then we can observe the context (features of the current
data) Πt (Line 2). Then for all possible prices, we estimate the
coefficients according to (16) (Lines 3–6). It can be shown that
with probability at least 1− δ∣∣Π�

t ω̂i − E[μi,t]
∣∣ ≤ α

√
Π�

t A
−1
i Πt, (17)

for any δ > 0, whereαT = 1 +
√
2 ln 1

δ + 2 ln(1 + t
2 ). We will

show this result in Section IV-C. The inequality gives a reason-
ably tight upper confidence bound for the expected reward of

Algorithm 1: VAP-Pricing.

arm pIt , from which a UCB-type arm-selection strategy can be
derived: at each time slot t, choose

It = argmax
i=1,...,K

(
Π�

t ω̂i + α
√

Π�
t A

−1
i Πt

)
. (18)

The criterion for arm selection can also be regarded as an additive
trade-off between the reward estimation and model uncertainty
reduction (Lines 7–8). After we post a price, we record the
response from the data contributor. If the data contributor accepts
the posted price, i.e., pIt ≥ vt, we calculate the reward and
updateAi as well as bi for all price pi > pIt . The data contributor
would upload her data, and we add it to the data set (Lines
10–14). Otherwise, i.e.,0 ≤ pIt < vt, the data contributor would
leave without contributing her data. The reward we get is 0, and
we update Ai as well as bi for all price pi < pIt (Lines 15–18).

Next, we introduce the design of revenue function π. By the
additivity property of data valuation metric in Section III-B,
we can get G(S ∪ T ) = G(S) +G(T ). To make the revenue
function extend the additivity, i.e., π(G(S ∪ T )) = π(G(S)) +
π(G(T )), it is easy to prove that π(·) should be the linear
function by Cauchy’s functional equation [41] as

π(G(S) +G(T )) = π(G(S)) + π(G(T )). (19)

In this work, we set π(GXXX(xxx)) = k ·GXXX(xxx)− ε, where k
can uniform the magnitude between the data valuation and
the revenue. As we have mentioned, k ·GXXX(xxx) guaranteed the
additivity when converting data valuation GXXX(xxx) to p. Besides,
ε can be seen as the fee per operation, which can also control
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the trade-off between total entropy reduction (data valuation)
and the total budget, which we will show in the evaluation
part. By setting proper ε, the service provider can acquire data
with different objectives. For example, a budget-limited service
provider may have a limited budget who only wants to collect
a smaller data set and can tolerate a slower data collection rate.
On the other hand, a budget-sufficient service provider has more
budget and wants to collect as much data as possible. A suitable
π(·) can control the trade-off between the data collection scale
and the total budget.

B. Properties of Data Pricing Mechanism

The data pricing mechanism we proposed in VAP-Pricing has
the following characteristics:

Incentive for Data Contribution: VAP-Pricing motivates data
contributors to submit data as early as possible because the
data valuation function GXXX(xxx) is submodular with respect to
XXX . Specifically, in VAP-Pricing, earlier data contributors will
have a higher (marginal) data contribution and are more likely
to get more profit, implying that we encourage data contributors
to submit data as soon as possible in the online data collection
process.

Robust to Strategic Behaviors: To guarantee the property of
symmetry, Shapley value leaves the possibility for selfish data
contributors to carry out strategic behaviors, such as copying
data for extra benefits. There are some solutions to solve this
issue, such as discounting the value of the same data [18], but it
will break the property of fairness in Shapley value. However,
VAP-Pricing can naturally decrease the similar data’s valuation,
as the later data will not impact the model too much due to the
submodularity of VAP-Valuation. Meanwhile, the data with the
same contribution will be given the same price at one specific
time slot. Thus, VAP-Pricing guarantees fairness to some extent.

Moreover, this data pricing mechanism is also arbitrage-free
when the VAP-Pricing is stable. Due to the additivity of VAP-
Valuation, regardless of the data order in a data set, the sum of the
data valuation for a dataset is the same, resulting in the identical
posted price. Specifically, we consider the case when the pricing
mechanism is stable, i.e., we have already got the accurateFv(p).
Suppose the data contributor divides a data set SSS into several
subsets SSSi, i = 1, . . . , n, and submits each subset at different
time slots. Then by the additivity property of VAP-Valuation
and the definition of revenue function π, we can further get

π(G) = π

(
n∑

i=1

Gi

)
=

n∑
i=1

π (Gi) + εn, (20)

where we denote G = GXXX(SSS) for the whole data set and Gi =
GX+

∑i−1
j=1SSSjX+

∑i−1
j=1SSSjX+

∑i−1
j=1SSSj

(SSSi) for each subset. We denote p1,i as the posted

price for each separated data subset and p2 as the posted price
for the whole data set. Then,

p1,i = argmax
p1,i

Fv(p1,i) (π (Gi)− p1,i) ,

p2 = argmax
p2

Fv(p2) (π(G)− p2n)

= argmax
p2

Fv(p2)

(
n∑

i=1

π (Gi)− (p2 − ε)n

)
. (21)

As Fv(p) is already known, it is easy to prove that p1,i =
p2 − ε = v when p ≥ v, which means if the full dataset can be
traded, data contributors can not get more payment by splitting
the data set and submitting them separately. Intuitively, if the
data contributor splits the data and submits them separately due
to the influence of the operation fee ε in the mapping function,
it results in a lower payment.

Data Privacy Preserving for mHealth. By the Label
Anonymity property of VAP-Valuation, the data contributor i
can query the possible payment by xi without uploading yi.
Then the label yi is not involved in the data valuation and pricing
processes, reducing the risk of privacy leakage. Thus, in the
data collection process, the data contributors have the right to
decide whether the data is used for model training under the
VAP-Pricing framework. Suppose the data contributors are not
satisfied with the current payment and choose not to contribute
their whole data. In this case, they do not leak the whole
information about their data (preserve the label y).

C. Regret Analysis

For stochastic linear bandits, a classic setting is a shared
parameter with possibly infinite arms. In our problem, we follow
the original version, considering fixed K arms and disjoint
parameters, i.e., the posted price set is fixed finite, and for each
arm, coefficient vector ω∗

i � (Fv(pi),−piFv(pi))
�.

We define the regret of VAP-Pricing as

RT =

T∑
t=1

(
Π�

t ω
∗
i∗ −Π�

t ω
∗
it

)
, (22)

where i∗ is the optimal arm (price) and it is the arm taken at
time slot t. The proof is divided into two steps, the first is that
the regret of the shared-parameter setting will be O(

√
dT ). In

this setting, there is only a fixed unknown parameter ω∗ for
all arms, where ω∗ ∈ R

d. After that, we show the regret of the
disjoint-parameter setting under our problem setting will reach
O(

√
dKT ). Considering the shared-parameter setting, first, we

make some assumptions, which are common in the traditional
stochastic linear bandits problem.

Assumption 1: We assume that the observed noise i.e., (rt −
Π�

t ω
∗) is independent standard Gaussian noise, where rt is the

reward and ω∗ ∈ R
d is an unknown but fix parameter.

Assumption 2: We assume that the contexts Π and the param-
eter ω∗ are bounded. ‖Π‖2 ≤ 1, ‖ω∗‖2 ≤ 1.

Then the regret under the shared-parameter setting is

RT =
T∑

t=1

(
Π∗

�ω∗ −Π�
t ω

∗) , (23)

where Π∗ is the optimal action and Πt is the action taken at
time slot t. To note, it is different from the previous definition of
Π. Here we reuse the symbol for simplicity. The actions here
contain both the original context and the information of the
arm selection, which will be introduced in detail in (34) later.
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To complete the proof, we introduce the concept of confidence
ellipsoid. The result shows that ω∗ lies with high probability in
an ellipsoid with center ω̂ [42].

Lemma 1 (Confidence Ellipsoid): Let At = λI +∑t
τ=1 ΠτΠτ

�, ω̂t = A−1
t

∑t
τ=1 cτΠτ , αT =

√
λ +√

2 ln 1
δ + d ln(1 + t

dλ
), then with probability at least 1− δ,

for all t ≥ 0, ω∗ lies in the set

Ct =
{
ω ∈ R

d : ‖ω − ω̂t‖At
≤ αT

}
. (24)

Then we can get the regret of shared-parameter LinUCB.
Theorem 1: With probability 1− δ, the regret RT of shared-

parameter LinUCB satisfies

RT ≤ αT

√
8dT ln

(
1 +

T

λd

)
= O(d

√
T ), (25)

where T is the total time slots, the hyperparameter αT =
√

λ +√
2 ln 1

δ + d ln(1 + t
dλ
), d is dimension the unknown parame-

ters, and λ is the coefficient of the identity matrix in the gram
matrix.

Proof: By Cauchy-Schwarz and Lemma 1, we have∣∣∣(ω∗ − ω̂t)
�Π

∣∣∣ ≤ ‖ω∗ − ω̂t‖At
‖Π‖A−1

t
≤ αT ‖Π‖A−1

t
. (26)

Let ω̃t ∈ Ct be the parameter in the confidence set to make that
ω̃�
t Πt = maxω∈Ct

ω�Π Thus,

Rt = Π∗�ω∗ −Π�
t ω

∗

≤ Π�
t (ω̃ − ω∗)

= Π�
t (ω̃ − ω̂t) + Π�

t (ω̂t − ω∗)

≤ 2αT ‖Πit‖A−1
t−1

. (27)

As the definition of αT , we can get αT ≥ 1. By the
Assumption 3, we have Rt ≤ 2αT min{1, ‖Πit‖A−1

t−1
}. Then by

the Cauchy-Schwarz inequality and min{1, x} ≤ 2 ln(1 + x),
we can bound the regret as

RT =

√√√√T

T∑
t=1

R2
t

≤ αT

√√√√4T
T∑

t=1

min
{
1, ‖Πit‖

2
A−1

t−1

}

≤ αT

√√√√8T
T∑

t=1

ln
(
1 + ‖Πit‖

2
A−1

t−1

)

= αT

√√√√8T ln

T∏
t=1

(
1 + ‖Πit‖

2
A−1

t−1

)
. (28)

By the definition of A, we have

det(AT ) = det(AT−1 +ΠiTΠ
�
iT
)

= det
(
A

1
2

T−1

(
I +A

− 1
2

T−1ΠiTΠ
�
iT
A

− 1
2

T−1

)
A

1
2

T−1

)

= det (AT−1) det
(
I +A

− 1
2

T−1ΠiIΠ
�
iT
A

− 1
2

T−1

)
= det (AT−1)

(
1 + ‖ΠiT ‖

2
A−1

T−1

)
· · ·

= det (A0)

T∏
t=1

(
1 + ‖Πit‖

2
A−1

t−1

)
. (29)

Then, by AM-GM inequality, we can get

det (AT ) ≤
(
Trace (AT )

d

)d

=

(
λd+

∑T
t=1 Trace

(
ΠitΠ

�
it

)
d

)d

=

(
λ +

∑T
t=1 Trace

(
Π�

it
Πit

)
d

)d

≤
(

λ +
T

d

)d

,

(30)

with detA0 = λd, we can further get

detAT

detA0
≤
(
1 +

T

λd

)d

. (31)

Then, we can continue bounding the regret as

RT ≤ αT

√√√√8T ln
T∏

t=1

(
1 + ‖Πit‖

2
A−1

t−1

)

= αT

√
8T ln

detAt

detA0

= αT

√
8Td ln

(
1 +

T

λd

)
. (32)

�
Till now, we obtain the regret of the shared-parameter setting

with a single true ω∗ assumed.
Theorem 2: With probability 1− δ, the regret of disjoint-

parameter VAP-Pricing satisfies

RT = O(2K
√
T ), (33)

where T is the total time slots, K is the number of arms, and

αT =
√

λ +
√

2 ln 1
δ + d ln(1 + t

dλ
) in VAP-Pricing.

An intuitive understanding is that the regret of VAP-Pricing
is related to the number of arms (prices) set K and the total time
slots T . As a bigger arm size, the regret will increase due to a
larger range of policies, and VAP-Pricing can get logarithmic
accumulated regret. Also, as α is related to δ, the choice of α in
VAP-Pricing will affect the probability of the regret guarantee.

Proof: In our problem, the parameter is disjoint over each
arm so we have K separate parameters ω∗

i to estimate, one for
each arm. Then it is obvious the regret of the disjoint-parameter
situation is a factor ofK worse than that of the shared-parameter
LinUCB. Another explanation for this is that we can generate a
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new parameter Ω∗, to make

Ω∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω∗
1

...

ω∗
i
...

ω∗
K

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Πt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
...

Πt

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
: i = 1, 2, . . . ,K

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (34)

where ω∗
i ∈ R

d. Thus by the definition of Ω∗, we have Ω∗ ∈
R

D, D = dK. Then we can get under shared-parameter Ω∗, the
regret is bounded by O(D

√
T ) = O(dK

√
T ). �

D. VAP-Pricing Under a Fixed Limited Budget

In Section IV-A, we considered that the service provider’s
budget is not fixed, and it can be adjusted by ε. However, in
this section, we consider another common situation in real-life
situations, where the budget is fixed at the beginning. In this
case, we cannot simply model it as an ordinary contextual
multi-armed bandit problem as before. This is because we need
to consider not only the revenue brought by the current arm
each time we pull but also the budget consumption at the same
time to ensure that we can get the maximum revenue when the
budget is depleted. Then a straightforward idea is to model it
as a linear contextual bandit with backpacks problem, which is
an extended version of VAP-Pricing above. Linear contextual
bandits with backpacks had been widely studied by previous
work [43]. However, we can not apply the previous method to
our model. In previous work, it was assumed that there is a
fixed but unknown distribution D on the context. Whereas in
our modeling, contexts Πt = (π(Gt), nt)

�, i.e., data valuation
and the number of data samples do not follow a fixed distribution
because the data valuation has diminishing marginal property.
The good news is that the part not known to the data provider
and needs to be inferred by the VAP-Pricing is the reserve
value distribution Fv(p) of data providers. It is a deterministic
distribution that does not vary over time. Thus, considering the
budget limitation scenario, we can remodel the problem as a
static multi-armed bandit with a knapsack framework, instead
of considering time-varying contexts (data valuations). In the
first stage, we predict the reserve value distribution of the data
contributors through a static multi-armed bandit, and then we
combine the expected reserve value distribution and the current
data valuation to compute the accurate posted price.

Next, we give a formal definition of this problem. The service
provider is given access to d-dimensional of K arms (price)
denoted as a ∈ [K] := {1, 2, . . . ,K}. Each time t ∈ [T ], the
service provider pulls an arm at and observes the reward and
consumption. We denote the unknown expected reward as rt,
and the corresponding resource consumption as ct. We assume
there is a fixed total budget B ∈ R+ on the consumption, which
is a hard constraint. The algorithm stops at the earliest time τ
when B is exhausted.

To solve this bandit with knapsack problem, we decomposite
the budget into each slot. For submission with n pieces of data
samples, we regard the strategy as the repeated n posted price.

Algorithm 2: VAP-PricingwK.

Thus, in each time slot, we only need to consider the unit reward
and the unit cost of each price pi, i ∈ [K]. First, we define the
unit reward (profit) and cost for each arm. The reward (profit)
that the service provider can obtain from one data contributor
with a reserve value v is

r(pi, v) =

{
π(GXXX(xxx))/n− pi pi ≥ v,
0 0 ≤ pi < v.

(35)

where arm i ∈ [K]. And the unit cost that the service provider
pays for each arm i with a reserve value v is

c(pi, v) =

{
pi pi ≥ v,
0 0 ≤ pi < v.

(36)

As we mentioned above, we transform them into functions
related to Fv(pi),

E[r(pi, v)] = Fv(pi)(π(GXXX(xxx))/n− pi).

E[c(pi, v)] = Fv(pi)(pi). (37)

Then in first stage, we calculate the Fv(pi)

Fv (pi) =
f(i)

m(i)
, (38)
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Fig. 2. Model Changes during data addition.

where f(i) is the number of times that data contributors accept
pi, i.e., pi ≥ v in m(i). Then based on the estimation of Fv(pi),
we can calculate the expected reward and cost. We give detailed
data pricing with a knapsack algorithm, called VAP-PricingwK
in Algorithm 2. For the input of the algorithm,α is a parameter to
control the exploration scale,K is the number of arms (candidate
price),T is the total time slots,B is the total Budget of the service
provider, ε is the budget factor, GXXX(xxx) is the VAP-Valuation of
xxx, and π(·) is the revenue function. We initialize the parameter
f(i) and m(i) for each arm i (Lines 1–2), and for all possible
prices, we pull each arm once (Lines 5–6). As for each time slot
t, there is a data contributor t querying the price by her data xxxt.
First, we estimate the reserve value distribution as (38) based
on the historical observation (Line 9). To estimate the reward
rt(i) and cost ct(i) for each arm, inspired by the UCB-based
algorithm for BwK [44], which is based on “optimism in the
face of uncertainty”, we make optimistic estimates of them

r̃t(i) = Fv(pi)

(
π(GXXX(xxxt))

nt
− pi

)
+ α

√
ln t

m(i)
,

c̃t(i) = Fv(pi)(pi)− α

√
ln t

m(i)
, (39)

where r̃t(i) is the upper confidence bound of rt(i) and c̃t(i) is
the lower confidence bound of ct(i) (Lines 10–11). After getting
r̃t(i) and c̃t(i), we solve the following linear programming to
get the policy:

maxq∈Δ r̃t · q
s.t. c̃t · q ≤ (1− ε)ntB

T

, (40)

where q is the probability to pull each arm, and ε =
√

γd
B +

log(T )γdB , γ = log(Td
δ ). Then we select arm It randomly ac-

cording to the probability in q, and post the price (Lines 12–14).
After posting a price, we record the response from the data
contributor. If the data contributor accepts the posted price, i.e.,
p ≥ vt, we update f(i) as well as m(i) for all arms i > It.
The data contributor would upload her data, and we add it to
the data set (Lines 15-21). Otherwise, i.e., 0 ≤ p < vt, the data
contributor would leave without contributing her data. We only
update m(i) for all arms i ≤ It (Lines 23–24).

V. EXTENSIONS TO GENERAL MODELS

In this section, we extend VAP to advanced ML models. In
Bayesian linear regression, we can easily calculate the posterior
parameter distribution by a closed-form expression. However,
in other advanced ML models, such as Bayesian neural net-
work [33], parameter spaces are often high dimensional, and
computing their entropy is usually intractable. Furthermore, for
non-parametric processes, such as the Gaussian process [32], the
parameter space is infinite-dimensional, which further increases
the computational complexity.

To solve this problem, inspired by (9) and (8), we transfer the
objective from computing uncertainty in the parameter space to
the prediction space, avoiding gridding parameter space (expo-
nentially hard with dimensionality). Fig. 2 shows the comparison
of parameter probability density distribution and prediction
uncertainty. We can find that they have the same shrinking
trend when adding more training data. The model’s grasp of
the parameter is getting higher, implying the model uncertainty

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 05,2024 at 14:06:09 UTC from IEEE Xplore.  Restrictions apply. 



5976 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

and prediction uncertainty reduction. Thus, the data valuation we
obtained can be regarded as a measure of uncertainty. The dif-
ference is that (9) calculates the predictive distribution variance
in the prediction task, the aim of which is to get the uncertainty
in the current test data to evaluate the reliability of a prediction.
However, (8) calculates the entropy reduction of parameter βββ
caused by adding new training data from the training data set.
The goal is to get the model uncertainty changes caused by
current training data to measure each data’s contribution.

Thus, we can calculate entropy in low-dimensional output
space using the idea of prediction uncertainty. For new data,
d = (xxx, y), we calculate its contribution by regarding xxx as the
features of the prediction task to calculate its prediction uncer-
tainty. Specifically, for a representative non-parametric model,
we write Gaussian process regression(GPR) as yyy = f(xxx) + εεε
with the unknown function f follows a N (μ, k) and εεε fol-
lows a N (0, γ2I) [32]. Different from parameter βββ in range
regression, there are no specific parameters in f . Thus, GPR
is a non-parametric model. Consider the current purchased
data set D = {di}ni=1 containing n data with di = (xxxi, yi),
[f(xxx1), f(xxx2), . . . , f(xxxn)]

� ∼ N (μμμ,K), where μμμ is the mean
vector and KKK is the n× n covariance matrix, KKKij = k(xxxi,xxxj).
To make a prediction of new data samplexxx by the current model,
the predictive distribution is

p (f(xxx) |XXX,YYY ,xxx) = N (μ̂μμ,Σxxx), (41)

where the predictive distribution variance is

Σxxx =KKK(xxx,xxx)

−KKK(XXX,xxx)�
(
KKK(XXX,XXX) + γ2I

)−1
KKK(XXX,xxx). (42)

Then, similar to the (8), the valuation function in GPR can be
set as

GXXX(xxx) =
1

2
ln(1 + Σxxx). (43)

Moreover, for the complex parametric model, neural network,
similar to the Bayesian linear regression, we can put a prior
distribution over its weights, such as a Gaussian prior distribu-
tion:WWW ∼ N (0, γ2I). Such a model is referred to as a Bayesian
neural network (BNN) [33]. For each new data x, we can obtain
the corresponding predictive distribution uncertainty using the
BNN uncertainty [8]. First, we optimize the parameters of the
simple distribution instead of optimizing the original neural
network’s parameters in BNN, where the posterior p(WWW |XXX,YYY )
is fitted with a simple distribution q∗θθθ(WWW ), parameterized by θθθ.
Then by the Dropout in BNN, which can be interpreted as a
variational Bayesian approximation, epistemic uncertainty can
be measured. For classification, the model prediction can be
approximated using Monte Carlo integration as follows:

p(fWWW (xxx) = r |XXX,YYY ,xxx) ≈ 1

T

�∑
t=1

softmax
(
fŴWW t(xxx)

)
, (44)

with T sampled masked model weights ŴWW t ∼ q∗θθθ(WWW ), where
q∗θθθ(WWW ) is the Dropout distribution [8]. Then the valuation func-
tion can be calculated by

GXXX(xxx) = −
R∑

r=1

pr log pr, (45)

where R is the number of categories. For regression, the predic-
tions are made by approximating the predictive mean

E(fWWW (xxx)) ≈ 1

T

T∑
t=1

fŴWW t(xxx). (46)

The prediction uncertainty is captured by the predictive variance,
which can be approximated as

Var(fWWW (xxx)) ≈ 1

T

T∑
t=1

fŴWW t(xxx)�fŴWW t (xxx)− E
�
E, (47)

Similarly, the valuation function can be calculated by

GXXX(xxx) =
1

2
ln(1 + Var(fWWW (xxx))). (48)

Thus, we can extend the VAP for various online ML models
as long as they can calculate prediction uncertainty, such as GPR
and the model under the Bayesian framework. More intuitively,
rather than collecting data for significantly reducing the param-
eter distribution’s differential entropy, we marginally seek the
data for which the model is most uncertain about the predictions.
If there is a higher degree of uncertainty about the prediction of
arriving data, we do not have enough data whose features are
similar to its features, so we have less confidence in it. So when
we add this data to our training data set, it will significantly
reduce the model uncertainty in this data region. Thus, such
data will contribute more to the model, leading to more entropy
reduction of parameter distribution, and the service provider
would like to post a higher price for it. In addition to online
learning models, VAP can be used in some other domains to
guide the data collection process. For example, in domains such
as active learning [45] and Bayesian reinforcement learning [46],
where the model should have the ability to identify the most
valuable data for model training and add it to the training set.

VI. EVALUATION RESULTS

In this section, we evaluate our VAP through extensive ex-
periments on real-world human behavior indicators data, which
can be involved in mHealth.

A. Evaluation Setup

We present the evaluation results based on two real-world hu-
man behavior data sets: 1) Human Activity Recognition (HAR)
database [47], a data set built from the recordings of 30 data
contributors performing daily living activities while carrying a
waist-mounted smartphone with embedded inertial sensors. The
obtained data set was randomly partitioned into two sets, where
70% of the volunteers were selected to generate the training
data and 30% the test data. 2) Pima Indians Diabetes (PID) [48],
a data set initially from the National Institute of Diabetes and
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Fig. 3. VAP-Valuation on different models (Ridge classification (RC), Gaussian process classification (GPC)) and Tasks (HAR and PID Database).

Digestive and Kidney Diseases. The data set’s objective is to
diagnostically predict whether a patient has diabetes based on
specific diagnostic measurements included in the data set.

B. Results of Data Valuation

1) VAP on Different Models and Tasks: We evaluate the per-
formance of VAP-Valuation. Fig. 3 shows that VAP-Valuation
is a proper model value evaluation metric leading to smaller
model uncertainty and higher model accuracy. First, as for RC,
in Fig. 3(a) and (d), the general trend in total entropy reduction
and prediction accuracy boost is consistent, which means the
goals of data collection and model optimization are consistent
under VAP. Meanwhile, in Fig. 3(b) and (e), by observing that
the model accuracy increases slowly with the decrease of VAP-
Valuation and that the turning points of them are close (for about
20 in Fig. 3(a) and 500 in Fig. 3(c), we can conclude that the
VAP is able to judge the proper scale of the data collection. That
is to say, after collecting such an amount of data, the valuation
of the new data is relatively small, and the accuracy of the model
is relatively stabilized.

As for GPC and BNN, using the VAP-Valuation in Section V,
we value the data on the outcome space. As the PID is a smaller
data set, we adopt the GPC model to it. Meanwhile, HAR is a
more extensive data set, which is more suitable for training with
the BNN model. In Fig. 3(c) and (f), we can get a similar result
with the RC model. By adding a new data sample, the model
uncertainty is smaller, leading each data’s contribution to the
model more negligible, and the model accuracy increases. Also,
the turning points of them are close, for about 20 in Fig. 3(c)
and 1000 in Fig. 3(f). Moreover, from all the results in these
three models, we can notice that the contribution of each data
point shows the characteristic of diminishing marginal, which is
consistent with the properties we described in Section III-B.
Valuation on the outcome space (Fig. 3(c) and (f)) appears

Fig. 4. Performance of different data valuation metrics. (a) Comparison of the
valuation of the first 100 PID data. (b) The effect of removing high-valuation
data points under different data valuation metrics.

to fluctuate more than the valuation on the parameter space
because there is only one parameter space, and its dimension
is higher and the previous decline is more. While the predictive
distribution for each data is a different distribution. We can also
notice some prominent high points in VAP-Valuation. Such data
points may be the data points of new distributions in the system
that have not been acquired before. In practice, in addition to
data points that may be of higher epistemic uncertainty and thus
show high value to the model, it can also be some incorrect
data due to the problems arising from equipment acquisition.
Furthermore, the service provider can identify and distinguish
between the two types of data based on specific tasks. For
example, the service provider can distinguish whether data is
from a hypertensive patient (150/100 mmHg) or is derived from
an abnormal collection (500/100 mmHg).

2) Performance of Different Data Valuation Metrics: We
compare our method with other static data valuation metrics for
machine learning, including TMC-Shapley [20], G-Shapley [20]
and Random (one possible online metric) in Fig. 4. Compared
with other methods, VAP-Valuation is more suitable for online
learning for the following reasons. First, as Fig. 4(a) shows, the
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Fig. 5. Performance of different data pricing mechanisms under different reserve values’ distribution, from left to right: f1(v): An approximately normal
distribution within [0, 1], where the mean is 0.5, and variance is 0.1; f2(v): An approximately normal distribution within [0, 1], where the mean is 0.5, and variance
is 0.01; A constant distribution as f3(v) = 0.5.

VAP-Valuation shows many excellent characteristics for data
pricing and collection. It has a significant downward trend as the
gradual increase of data over time considers the arrival order,
which can incentive an earlier data submission. Besides, we
can see that VAP-Valuation is always strictly positive, which
provides convenience for data pricing.

Moreover, Shapley value and its variants are common prac-
tices in data valuation for the ML field, so here we empha-
size why VAP outperforms Shapley in online learning tasks.
Compared to the Shapley value, VAP-Valuation can perform
online calculations without corresponding labels and testing data
according to the inferrability of VAP-Valuation we mentioned
in Section III-B. Simultaneously, the computational complexity
will increase significantly with the larger scale of the data set
in static Shapely value. Although there are some approximate
calculation methods such as TMC-Shapley [20], it still requires a
lot of test data and high computational cost, which is impossible
and inappropriate to achieve in a real-world mHealth system.
G-Shapley, an approximation of TMC-Shapley, can be adapted
to online learning. The marginal contribution in G-Shapley is
the change of the model’s performance. However, as shown in
Fig. 4(a), we can find the G-Shapley does not achieve a good
approximation of TMC-Shapley, because the calculation result
can be affected by various factors, the size of the test set, learning
rate, haphazard, etc. Finally, We can see that VAP-Valuation
consistently outperforms the other two mechanisms as illustrated
in Fig. 4(b), as it shows a better decrease over time than others
as removing high-valuation data points. Thus, VAP-Valuation is
more suitable for online learning tasks.

C. Results of Data Pricing

First, we compare the performance of different data pricing
mechanisms under a regular situation: VAP-Pricing, Random,
Half Fix, Half Valuation, LinUCB [40] and UCB1 [39]. In Ran-
dom pricing, the posted price p is uniformly distributed within
[0, 1]. In Half Fix pricing, we set p = 0.5. And in Half Valuation
pricing, we set p = min(0.5 ·GXXX(xxx), 1). In all experiments, we
set α = 1.2, ε = 0,K = 10, T = 500, and the reserve value is
an approximately normal distribution within [0, 1], where the
mean is 0.5, and the variance is 0.01 unless otherwise noted. In
Fig. 5, we can see that VAP-Pricing is always better than any

other policies under different settings of reserve values of data
contributors. Moreover, when the reserve value distribution is
closer to the constant distribution, VAP-Pricing can get a higher
profit. As for other mechanisms, we can see that Random is
always the worst. The performance of Half Fix will be worse
than contextual methods because it cannot capture the valuation
information of the data samples. It can be considered as the
optimal case of the traditional UCB1 method (also without
considering the context), and Fig. 5 turns out that it is true.
In addition, from the last figure in Fig. 5, it can be shown
that Half Fix has a very high profit in the early stage. This
is because when the reserve value is a constant f(v) = 0.5,
the posted price p = 0.5 in each time slot will definitely be
accepted by data contributors. The profit growth of Half Fix
will be slow or even negative in the later period, also because
the lack of data valuation results in the purchase of low-value
data at high prices. In contrast, Half Valuation can always buy the
data sample with a higher valuation by posting a high price, so
it can always maintain a better growth trend. However, without
the estimation of the reserve value will overbid, causing its total
benefit to be damaged. Besides, the naive LinUCB method does
not take into account the monotonicity of pricing and also leads
to unsatisfactory profits.

Besides, we evaluate the performance of different ε. In Fig. 6,
we can see that a bigger ε leads to a smaller budget and total
entropy reduction while maintaining a high profit. Supposing
that the service provider chooses a higher ε, correspondingly,
he tends to use the limited budget to collect a smaller data
set, this limited data set can effectively reduce the uncertainty
of model predictions. On the contrary, if the service provider
chooses a smaller ε, he wants to use more budget to collect more
data. This adequate data set can further significantly reduce the
uncertainty.

Comparing the price of different pricing policies in Fig. 7, we
can see that the VAP-Pricing method can maintain the downward
trend of valuation compared to Half Valuation, which is also
fairer than other Random or Half Fix. Compared with other
advanced bandit methods, i.e., UCB1 and LinUCB, VAP-Pricing
can better estimate the reserve value distribution of contributors,
leading to faster convergence and a more reasonable price. It can
monitor changes in data valuation and adjust the posted price
promptly to maximize the profit.
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Fig. 6. Performance of Different ε (ε= 0, 0.1, 0.5) and different reserve values’
distribution (From top to bottom are f1(v), f2(v), and f3(v)) on budget and
entropy reduction.

Fig. 7. Price Comparison of Different Pricing Mechanisms (From top to
bottom are VAP-Pricing, Half Valuation, Random, LinUCB, and UCB1).

In order to explain the effect of VAP-Pricing more intuitively,
we also designed a set of experiments in a special case, that is
when the reserve value v = 0. Fig. 8 shows that VAP-Pricing
can converge quickly to the lowest price to extract more profit.

As for the performance of different data pricing mechanisms
under a fixed limited budget, we compare the performances
of VAP-Pricing, Random, Half Fix, Half Valuation, LinUCB,
UCB1, and VAP-PricingwK in Fig. 9. VAP-PricingwK demon-
strates good budget control capability, consistently halting close
to the predetermined timeframe (T = 500), contrasting with

Fig. 8. Performance and Price when reserve value f4(v)=0.

other methods that cease earlier due to budget exhaustion. Con-
currently, the total profit of VAP-PricngwK is maximal and the
UCB1 and random methods are the worst. In addition, it can
be noticed that VAP-PricingwK does not grow as fast as some
of the other algorithms in the early stages due to the need to
control the budget and not to adopt a particularly aggressive
exploration strategy, but since it retains a larger budget, it will
have the opportunity to collect valuable data for higher profits in
the later stages. It is also worth noting that although VAP-Pricing
consumes the budget more rapidly, the performance is still
acceptable. This is contributed to the incorporation of contextual
information, which enhances learning speed. However, under a
fixed budget, it is challenging to identify an appropriate budget
control factor ε for VAP-Pricing in advance, resulting in a loss
of the final profit. In contrast, VAP-PricingwK’s control under a
fixed budget is automatic. Finally, we also find that when the
variance of the reserve value v is smaller, the magnitude of
the change is smaller, making it easier for VAP-PricingwK to
estimate Fv(pi), thus obtaining larger profits.

VII. RELATED WORK

A. Mobile Health

The researchers develop multiple models by combining prin-
cipled medical approaches with ML techniques in mHealth in
a variety of domains, including diabetes [49], [50], [51], activ-
ity recognition [52], [53], depression treatment [54], [55], and
blood pressure monitoring [30], [56]. Recently, researchers are
making recent progress in COVID-19 [7], [57], [58], [59]. The
design of the mobile device not only proposes a viable mHealth
solution and drives the further development of mHealth, but
also generates a large amount of mHealth data in the process.
Based on such massive data, various machine learning models
have been developed, especially some online learning models
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Fig. 9. Performance of different data pricing mechanisms under a fixed limited budget B = 100. Reserve values’ distributions from left to right are f1(v), f2(v),
and f3(v).

and incremental learning models are proposed [14], [15], [16],
[17], in which the mHealth models would continuously update
over time as more information is collected and made available.
There are also many researchers who focus on the integration
of Bayesian methods into mobile health [60], [61], [62]. How-
ever, these works are currently considering designs of hardware
devices and ML models’ improvements. Few of them consider
the data acquisition mechanism, neither data valuation, and data
pricing mechanism. Barriers still exist in the journey of mHealth
data from generation to use.

B. Data Valuation and Pricing for ML Tasks

Lately, Shapley value has been widely used in the data val-
uation and pricing problem for ML tasks. Agarwal et al. [18]
design a market mechanism to price training data and match
buyers to sellers based on Shapley value. Jia et al. introduce
several additional approximation methods for efficient compu-
tation of Shapley values for training data [19]; subsequently,
they provided an algorithm for the exact computation of Shapley
values for the specific case of nearest-neighbour classifiers [22].
Meanwhile, Ghorbani et al. developed a truncated Monte Carlo
sampling scheme (TMC-Shapley), demonstrating empirical ef-
fectiveness across various ML tasks [20]; subsequently, they
proposed distributional Shapley, where the value of a point is
defined in the context of an underlying data distribution [21].
However, these data valuation methods are not suitable for online
ML tasks. Despite not being used for data valuation, ranking
the importance of training data points has been used for under-
standing model behaviors, detecting data set errors, etc. Existing
methods include using the influence function [63] for smooth
parametric models, and a variant [64] for non-parametric ones.
Ogawa et al. [65] proposed rules to identify and remove the least
influential data to reduce the computation cost when training
support vector machines (SVM). Kendall et al. measured the
uncertainties in Bayesian deep learning for computer vision [66].
These approaches could potentially be used for valuing data.

C. Uncertainty in Machine Learning

The VAP-Valuation metric is closely related to the concept
of epistemic uncertainty in machine Learning. In Bayesian
modeling, there are two main types of uncertainty one can
model. Aleatoric uncertainty comes from the noise when data

is generated or collected, for example, sensor noise or motion
noise. Aleatoric uncertainty cannot be reduced even if more data
were to be collected. While epistemic uncertainty comes from
the model’s ignorance of the data when the collected data is not
enough. This uncertainty can be explained away given enough
data and is often referred to as model uncertainty. These two
uncertainties were first studied and classified by Kiureghian and
Ditlevsen [67]. And these two types of uncertainty have further
been more specifically studied in Bayesian deep learning for
computer vision by Kendall and Gal [66]. Before that, Gal and
Ghahramani proved that deep neural networks could be cast
as performing approximate variational inference in a Bayesian
setting [68] and extend it to arbitrary deep learning models [69].
Based on that, they model uncertainty with dropout NNs [70]. In
previous work, uncertainty is the predictive distribution variance
in the prediction task for the current test data to judge the credi-
bility of a prediction. However, in VAP-Valuation, we calculate
the posterior distribution entropy reduction of parameter or the
predictive distribution variance of new data to measure each
data’s contribution.

D. Multi-Armed Bandits

The multi-armed bandit (MAB) problem is a sequential
decision-making model and widely studied by many works
with different models and solutions, such as upper confidence
bound [39], ε-greedy [71], and Thompson sampling [72], [73].
In the traditional setting of MAB, an arm can be represented by a
scalar to infer the reward that is drawn from its distribution which
is unknown to the player, while in the contextual bandit [40],
[42], a context vector represents each arm, and Õ(

√
T ) regret

bounds can be achieved based on UCB. Moreover, as classical
modeling, the linear reward model has been widely studied in
contextual bandits [72], [74]. Considering knapsack constraints
on various resources in the bandit framework, the bandit with
knapsack (BwK) is first studied by Badanidiyuru et al. [75], who
presented two algorithms and proved that the regret achieved
by both algorithms is optimal up to polylogarithmic factors.
Later, based on the optimal regret, Agrawal and Devanur further
proposed alternative optimal algorithms under concave rewards
convex knapsacks [44], and a linear contextual setting [43].
Many real-world problems can be modeled as various versions
of bandit problems [76], [77], [78], because MAB represents
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an online learning paradigm that naturally captures the intrinsic
exploration-exploitation tradeoff in sequential decision-making
process.

VIII. CONCLUSION

In this work, we have introduced VAP, an innovative online
data valuation and pricing mechanism designed specifically
for ML tasks in the context of mobile health (mHealth). We
evaluate the data valuation by measuring its contribution to
ML model under a Bayesian perspective, using the entropy of
the distributions over model parameters. To address the profit
maximization problem, we have developed an online posted
price data pricing mechanism within a contextual multi-armed
bandit framework, leveraging the data valuation metric provided
by VAP. Furthermore, for the limited budget situation, we have
proposed VAP-PricingwK under a multi-armed bandit with a
knapsack framework. Moreover, we have extended VAP from
Bayesian linear regression to more complex ML models by
computing the entropy from the model parameter space to the
output prediction space. Through comprehensive evaluation, we
have demonstrated that VAP outperforms existing online data
valuation and pricing mechanisms. The results highlight the
effectiveness and superiority of our approach in the mHealth
domain.
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